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Abstract: Landslides in urban areas have been relatively well-documented in landslide inventories
despite issues in accuracy and completeness, e.g., the absence of small landslides. By contrast, less
attention has been paid to landslides in sparsely populated areas in terms of their occurrences and
locations. This study utilizes high-resolution and LiDAR-derived digital elevation models (DEMs) at
two different times for landslide detection to (1) improve the localization and detection accuracies
in landslide inventories, (2) minimize human intervention in the landslide detection process, and
(3) identify landslides that cannot be easily documented in the current state of the practice. To
achieve this goal, multiple preprocessing steps were used to ensure the spatial alignment of the
multi-temporal DEMs. Map algebra was then used to calculate the vertical displacement for each cell
and create a DEM of Difference (DoD) to obtain a quantitative estimation of ground deformations.
Next, the elevation changes were filtered via an appropriate Level of Detection (LoD) threshold to
mark potential landslide candidates. The landslide candidates were further assessed with the aid of
customized topographic maps as auxiliary data and pattern recognition to distinguish landslides
(true positive changes) from construction, erosion, and deposition (false positives). The results from
the proposed method were compared with existing landslide inventories and reports to evaluate
its performance. The new method was also validated with temporal high-resolution Google Earth
images. The results showed the successful application of the method in landslide detection and
mapping. Compared with traditional methods, the proposed method provides a semi-automatic way
to obtain landslide inventories with publicly available yet lowly utilized DEM data, which can be
valuable in preliminary analysis for landslide detection.

Keywords: digital elevation model; landslide detection; LiDAR; multi-temporal; Marin County;
vertical displacement

1. Introduction

Landslides are among the most consequential natural hazards with devastating out-
comes such as human casualties as well as damages to civil infrastructure, environment, and
cultural heritage [1]. This makes landslides an ongoing concern and demands new methods
to better understand the mechanisms of landslides and promote the sustainable use of
ecosystems for disaster risk reduction [2]. The first step in mitigating the risk associated
with landslides is compiling a landslide inventory to provide systematic information about
landslides [3]. The main challenge in compiling these inventories is the landslide detection
approach. There are different approaches for landslide detection, which are mainly focused
on two types of data, i.e., satellite imagery and surface morphology. These approaches
are utilized to detect and map landslides mostly manually via the visual interpretation of
human experts [4].

In satellite imagery, high-resolution images were used to find temporal changes
in land cover, structure, and lithology properties, indicating landslide occurrence [5].
Although mapping landslides based on land cover change is a well-established approach [6],
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the accuracy of such methods diminishes with more extended time intervals due to the
vegetation growth and revegetation, which covers the scars [7]. Moreover, applying these
methods to wildfire-prone areas, such as California, is complicated and could prove to be
inaccurate due to wildfire-induced land cover changes [8]. However, investigators have
adopted different types of satellite imagery to identify landslides via land cover change
detection. For example, optical sensors have long been used for mapping large landslides
through temporal change detection to identify variations in soil cover or vegetation [9].
New very high resolution (VHR) sensors [10] and synthetic-aperture radar (SAR) [11]
are other examples of satellite imagery in landslide detection. The main drawback of
satellite imagery is the complex manual preprocessing steps needed to prepare the data for
interpretation, e.g., pansharpening, orthorectification, and radiometric correction [12]. To
detect and map landslides using different types of satellite imagery, visual interpretation
or semi-automated procedures were performed by a human expert to identify the above-
mentioned temporal changes in the study area. The main semi-automatic approaches for
using satellite imagery for landslide detection purposes are object-based and pixel-based.
The more widely-used approach is pixel-based, which includes traditional maximum
likelihood or minimum distance methods or more recent machine learning models such
as decision trees, artificial neural networks, convolutional neural networks, and random
forests [13]. These approaches have issues with high-resolution satellite imagery and its
rich information content [14]. Object-based analysis, however, uses a segmentation process
that groups pixels into meaningful units instead of analyzing them individually. This
enables researchers to utilize spectral information, textural data, and spatial properties of
data that were not possible before [15]. For example, Ghorbanzadeh et al. [16] used Sentinel
2 data and ALOS DEMs with fully convolutional networks, i.e., U-Net and ResU-Net, to
detect landslides.

In addition to satellite imagery, surface morphology has been extensively used to map
landslides. In surface morphology analysis, digital elevation models (DEMSs) of the surface
and their derivatives, such as shaded reliefs and surface roughness, allowed the mapping
of complex landslides [17]. These derivatives were used to identify patterns in morphology,
movement history, material types, and topographic variability to detect landslides through
the interpretations of a trained geomorphologist [18]. The interpreters search for geomor-
phological features that indicate landslide activity, such as roughness characteristics, major
and minor scarps, and cracks [19]. For example, McKean and Roering [20] utilized statis-
tical, Laplacian, and spectral analysis of DEMs to obtain spatial patterns of roughness to
identify landslides and their morphologic domains. LiDAR (Light Detection and Ranging)
revolutionized these DEM-related practices and helped create high-resolution DEMs of the
surface with sub-meter accuracy [21]. In addition to high accuracy, LIDAR can penetrate
vegetation [22] and forest canopies and create an accurate estimation of the surface eleva-
tion [23]. The major drawback of using LiDAR data is the time-consuming and expensive
data acquisition process for large areas [12]. Despite disadvantages, the employment of
LiDAR-derived DEMs for obtaining an accurate map of landslides in a small area can aid
in understanding the landslide process and is used in data-driven methods to identify
landslides for other purposes or future applications [24].

There are some issues with the methods mentioned above. First, the number of highly-
skilled and experienced human experts essential for visual interpretation is declining [12].
This fact hampers our ability to produce high-quality landslide maps, which subsequently
makes it harder to validate new landslide detection methods. Second, compiling a landslide
inventory for a large area is a time-consuming and expensive procedure that requires
technological and economic resources to acquire and process the data [25]. Third, the
accuracy of the conventional methods, which rely on changes in morphology and land
cover diminishes with longer time intervals, especially in areas that experienced wildfires
which causes physical weathering and vegetation removal. Fourth, landslide inventories
are subjective [26], and their quality depends on the accuracy of the data, the expertise
of the interpreter, geological and morphological complexity, and many other factors [27].
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These issues prompted researchers to develop quantitative approaches to process multi-
temporal DEM data, i.e., DEMs generated from data acquired two or more times, for
landslide assessment studies. A popular type of study is to analyze landslide boundary
changes to monitor the morphologic and volumetric changes in an active landslide over
short periods [28,29]. Such studies were often focused on understanding the evolution
and kinematics of specific deep-seated and well-known landslides [30,31] rather than
identifying new landslides [32]. Another application of multi-temporal LiDAR data was
to identify ground deformations and landslides in a specific study area. For example,
Burns et al. [33] used temporal DEMs, site reconnaissance visits, and satellite imagery
to detect landslides in Western Oregon; Mora et al. [34] employed probabilistic change
detection with temporal DEMs to map surface changes and determine the probability of
them being landslides. However, these studies used new LiDAR surveys, either collected
by themselves or by a third party, to test their hypothesis instead of using publicly available
DEMs. So far, no study has attempted to detect landslides for a large area with publicly
available DEM data.

To improve the current practice of landslide detection, a new semi-automatic and
nonsubjective method is presented in this paper. This semi-automatic feature means that the
proposed method does not require a human expert interpreter, which translates into greater
consistency and faster results. The nonsubjective feature means that the performance of
the new method depends solely on the input data, and factors such as the expertise of the
interpreter and the length of the time interval do not affect the outcomes. The reliance on
data also means that the new method analyzes sparsely populated areas with the same
procedure and accuracy as it treats urban areas, which is beneficial for the existing landslide
inventories that are biased toward documenting landslides that cause socio-economic
disruption and casualties. Additionally, this study aims to take advantage of the mentioned
benefits of high-resolution LIDAR-derived DEMs while avoiding their time-consuming and
costly acquisition processes as their main disadvantage. For this purpose, we used publicly
available multi-temporal DEMs from the 3D Elevation Program (3DEP), managed by the
U.S. Geological Survey (USGS). Given its low cost and the use of publicly available data,
this method can be a useful tool for preliminary analysis in landslide detection projects. To
prepare the DEM datasets for map algebra operations, the DEM data were preprocessed
to ensure their spatial alignment. Next, map algebra was employed to detect vertical
displacements within the study area and create a differential DEM called the DEM of
Difference (DoD). Then, the areas with an elevation change above a certain threshold were
marked as landslide candidates. The customized vector basemaps and multidirectional
Hillshade maps were employed as auxiliary data to infer the causes of elevation changes
to divide these landslide candidates into landslides (true positives) and “nonlandslides”
(false positives). The nonlandslide category includes new construction, excavation, fluvial
settlements, and erosion. The performance of the proposed method was evaluated with
landslide inventories and publicly available Google Earth images to verify its effectiveness.

2. Workflow and Study Area

This study comprises three main parts (Figure 1). The first part details the theoretical
foundation of this study. The DEM data are presented in two groups: 1-m DEMs from
2018 and 1/9 arc-second DEMs from 2010. Each group contains a series of topographic
quadrangles, i.e., tiles, that cover the study area. The tiles in each group have the same
coordinate system and cell resolution. Multiple steps were taken to preprocess the DEMs
and prepare them for use, i.e., DEM treatments. The tiles in each group were merged into a
single raster using geoprocessing tools to aid in later visualization and analysis. Next, the
coordinate system of the 1/9 arc-second DEM dataset was altered through map projections
to match that of the 1-m DEMs. After that, the DEM datasets were resampled to acquire
similar resolution DEMs with aligning grid cells. In the second part, map algebra [35]
was used to obtain a DoD from the resultant DEMs. The DoD was then analyzed and
filtered via a Level of Detection (LoD) threshold to distinguish information (actual vertical
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displacement) from noise. Auxiliary maps were then used to better interpret the differences
between the two raster datasets. The purpose of these maps was to help distinguish
the changes in the landscape caused by landslides (true positives) from those caused
by constructions, changes in the river basin, hydro-flattening effects, and erosion (false
positives). The third part was intended to verify and compare the results of the proposed
method using two landslide inventories and Google Earth images. The following two
sections will present more technical details for the theoretical basis and method.

=
‘ Data Description H Challenges J é
- —————= A
I DEM Treatments |«<— DEM Acquisition
I |
| | Coordinate SystemJ LCell Resolution} | §
| | g
I | a
I Grid Alignment I DoD Analysis
| ' —_/
_______________ 4
Validation Against Google Verification Using Landslide
Earth Images Inventories g
7 2
<
.
w

Discussion H Conclusionl

Figure 1. Workflow of study.

The study area is located in the state of California in the USA. It includes parts of San
Francisco and Marin Counties that cover more than 2000 km?. Figure 2 displays the location
of the study area using a red rectangle. This area is marked with dense vegetation, and its
elevation ranges from 104 m below sea level to 785 m above sea level, with a mean and a
standard deviation of 120 m and 117 m, respectively. The local climate is Mediterranean,
and precipitation falls mainly from January to May and from October to December.
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Figure 2. Location of study area.
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3. Theoretical Basis
3.1. Data Description

The advances in remote sensing, particularly LiDAR technology, have provided means
for acquiring higher-resolution imagery. The ability of LIDAR to penetrate vegetation,
cover large areas, and obtain precise surface models renders it an enticing tool for landslide
detection and mapping studies [36]. Moreover, the repeatability of high-resolution DEM
data provides avenues to extract spatial information, such as temporal changes in the
landscape. To harness this potential, a set of techniques and conventions, i.e., map algebra
developed by Tomlin and Berry [35], are used to manipulate and analyze cartographic
data. The cartographic data consist of perpendicular and equally spaced grids that define
locations so that each location is uniquely associated with a square called a “grid cell”
or a “pixel” in a raster. Therefore, the overall scheme for a raster is a rectilinear grid of
columns and rows, and each cell is a discrete geometric entity representing a recorded
characteristic/variable, e.g., elevation [37]. Map algebra operations use these variables to
calculate and output new variables and extract meaningful information from the data.

In the original definition of map algebra, locations are expressed in a Cartesian (x, y)
coordinate system in a two-dimensional space. In three-dimensional space, locations are
shown with cubes instead of squares and form cubic zones and layers. The rest is quite
similar to the 2D space; hence the existing functions can be extended to the 3D space
with (x,y, z) coordinates. Moreover, the 3D map algebra can be extended to the temporal
dimension by regarding the z dimension as temporal in nature [38]. This assumption
allows us to combine spatio-temporal values and extract information such as temporal
topographic changes. To achieve this, we discretized the temporal dimension and evaluated
the elevation values in two snapshot states representing two points in time. A prerequisite
for performing such operations is the spatial alignment of the grids across the temporal
dimension. This is noteworthy because any misalignment in temporal grids undermines
the assumption that the locations are shown by cubes, consequently introducing errors in
the map algebra operations. That is why quantitative analysis of changes requires special
care to ensure the spatial alignment of the DEM datasets. The preprocessing steps used to
address these misalignments include coordinate system transformations, cell resolution
adjustments, and grid alignment adjustments. More details regarding these preprocessing
steps can be found in Section 4.2. Knowing the background processes of these preprocessing
steps is essential because the increasing access to publicly available DEM data and GIS
software has made modeling more accessible than ever; however, using this DEM data
without a proper understanding of the digital database is of little practical significance. The
sensitivity of the DEM data to grid cell resolution and alignment is often overlooked due
to the misconception that digital spatial data are scaleless. This results in an unrealistic
sense of model accuracy that is detrimental to the modeling outcomes [39]. That is why
we adopted well-established resampling methods to manipulate and prepare the DEM
datasets for use.

3.2. Challenges

After ensuring spatial alignment, arithmetic operations can be utilized to quantify
terrain changes and create a DoD for two-time snapshots, t; and t; 1. In other words,
the elevation values of the older DEM were subtracted from the elevation values of the
newer DEM on a cell-by-cell basis. To create a DoD, spatially corresponding cells of the
input grids, z(;41) (ic, je) and z g 1) (ic, jc), were subtracted from one another and stored in
a matching output grid, DoD (i, jc):

DOD(ic/jc) = Zk41 (ierc) - Zk(ierc) (1)

These DoDs have many advantages and can be utilized to identify and estimate ground
deformations and study their causes. DoDs have been used to map erosion, deposition,
calculate volumetric changes, and other applications [40,41]. The use of DoDs gives rise to
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a set of nuanced questions: “What types of errors are involved in the DoD products and
how to mitigate them?” and “What is the root cause of the ground deformations obtained
by DoDs?”

Regarding the first question, several studies have tried to obtain the vertical errors
of LiDAR and other high-resolution DEM data for different conditions using methods
such as geodetic control networks [42]. Although there is no unanimous agreement on
the exact numbers, studies suggest that the error is somewhere between 17 cm to 26 c¢m,
depending on the vegetation cover [43]. However, issues arise when arithmetic operations
are performed to derive products from DEMs such as DoD. This fact is due to the difference
in acquisition tools and methods and is exacerbated when using multi-temporal DEMs
spanning long periods. Preprocessing the DEM data is pivotal in such cases to ensure that
issues, including the difference in coordinate systems, resolution, and misalignment of
DEM grids, do not introduce unnecessary errors in the analysis. Appropriate preprocessing
techniques can help minimize the DoD errors to inevitable ones, as described in the
following. Mathematically, a simple error propagation theory can be used to analyze
these errors for a derived variable such as DoD, provided that the two processed DEMs
are independent [44]. This means that, if the errors for the two DEMs involved in DoD
calculations are §p; and dp,, the total estimated error is ép7 : dpr = / (6p12 + 6po?) [45].
Any elevation change below this propagated error value will be filtered out as they are
indistinguishable from noise. This is the primary reason for applying a minimum LoD
threshold.

The second question is also crucial since not all ground deformations are due to
landslide activities and natural processes. Human geomorphic activities, including urban
development, road construction, mining, and landfills can lead to topographic changes.
Furthermore, natural processes such as erosion and deposition can also contribute to such
changes. This is especially important for DoDs that cover extended periods in which the
accumulation of seemingly insignificant natural processes results in measurable changes in
elevation. Several postprocessing steps are needed to classify these changes into landslide
and nonlandslide related. Choosing an appropriate LoD threshold is the first of these steps.
The LoD is a filter that aids in obtaining an abstract form of representation for the DoD
layer by classifying each cell into one of the two discrete classes to distinguish noise from
real changes:

@)

L, _[1 ifDoD > LoD
@)= 0 otherwise

where DoD; ;) is the elevation change for cell (i, ) and L; ;) is the resultant raster dataset.
Another critical attribute of the identified elevation changes is their relative loca-
tion to built-up areas and topographical features such as roads and rivers. This relative
location aids in identifying other nonlandslide-related ground deformations, including
urban development, fluvial settlements, erosion, and construction. Additionally, visual
pattern recognition of contiguous subsidence (downward vertical movement) in upslope
and accumulation in downslope can help characterize elevation changes as landslides.

4. Method
4.1. DEM Acquisition

The DEM data were acquired from the 3D Elevation Program (3DEP) of The National
Map (TNM), managed by the U.S. Geological Survey (USGS) [46]. The 3DEP provides
various open-access products and services, including DEMs with different resolutions [47].
This study utilized the two highest resolution DEMs available in this program: 1-m DEMs
acquired in 2018 and 1/9 arc-second DEMs acquired between April 2010 and March 2011.
The 1-m DEMs were exclusively produced from LiDAR source data with the Universal
Transverse Mercator (UTM) as the spatial reference with the North American Datum of 1983
(NADS83) [48]. The 1/9 arc-second DEMs have the second-best resolution (approximately
3 m). These DEMs also used NAD83, but they were distributed in a geographic coordinate
system in the unit of decimal degrees. The 1/9 arc-second DEMs were developed from
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LiDAR, photogrammetry, and other high-resolution sources [49,50]. Elevation data in both
of these products represent the hydro-flattened bare-earth topographic surface [47]. These
DEM sets were both obtained from 3DEP in multiple tiles with overlapping areas. The
spatial extent of each tile in the 1/9 arc-second and 1-m DEMs were 15 min and 1000 m,
respectively. In terms of quality, the 1-m DEMs meet the quality level II requirements
for vertical accuracy, whereas the 1/9 arc-second DEMs meet the quality level III. The
specifications for each type of DEM, including the aggregate nominal pulse density (ANPD),
aggregate nominal pulse spacing (ANPS), root mean square error in the vertical direction
(RMSE,), vegetated vertical accuracy (VVA), and non-vegetated vertical accuracy (NVA)
are given in Table 1 [47,51]. This table defines the minimum requirements for accuracy and
density of returns. The RMSE; is defined as

— )2
RMSEZ — Z (Zn Zn)

e ©

where 7 is the identification number of each check point ranging from 1 to N, z; is the nth
set of z elevation values, z), is the corresponding check points, and N is the total number of
check points.

Table 1. DEM specifications [52].

o,
Quality ~ANPD  ANPS RMSE, NVAatthe 95%  yyx ot the 95th
> (Non-Vegetated) Confidence .
Level (pls/m*) (m) Percentile (m)
(m) Level (m)
II >2.0 <0.71 <0.100 <0.196 <0.3
I >0.5 <141 <0.200 <0.392 <0.6

4.2. DEM Treatments

Seven 1/9 arc-second and twenty 1-m DEM tiles were merged into a single raster
with continuous coverage, i.e., seamless. The average elevation value of the adjacent tiles
was used to create a midpoint for each overlapping cell to determine the output cell value
in the seamless DEM. Additionally, each DEM had a corresponding grayscale colormap
for which the minimum and maximum values were proportionate to the minimum and
maximum elevations of the area that it covered (Figure 3a). This was considered when
merging the raster DEMs so that the resultant colormap could match the minimum and
maximum elevations of the new raster to create a seamless DEM raster (Figure 3b). Next,
the two DEM datasets needed to be processed and adjusted in multiple steps to prepare
them for creating a DoD. The following paragraphs are organized to detail these steps.

SRk Elevation (m)

785.36

I -104.01

j

5 10
I T I

20 kllometersi

F 5 10 20 ki!ometers‘
| T T

,San Francisco San Francisco

Figure 3. Example of raster DEMs used in this study (a) before and (b) after merging and adjusting
the colormap.
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The first preprocessing step was to address the discrepancy between the horizontal
coordinate systems of the 1/9 arc-second DEM and the 1-m DEM. The former uses a
geographical coordinate system based on a three-dimensional ellipsoidal surface; thus,
angular measurements for the geodetic longitude and latitude are used to specify the
location, i.e., (¢, A). The latter adopts a planar projected coordinate system and uses two-
dimensional coordinates and linear distances as units, i.e., (x,y). The coordinate system
of the 1/9 arc-second DEM raster was altered to match that of the 1-m DEM. For this
purpose, the Universal Transverse Mercator (UTM) projection [53] was used to transform
the geodetic locations of the 1/9 arc-second DEM to the planar system.

After projection, the second preprocessing step was to adjust the cell resolution so
that both raster datasets had the same cell size. To achieve this goal, the resolution of the
1-m DEM raster was altered to match the coarser resolution of the 1/9 arc-second DEM
(approximately 3 m). The resampled raster mapped each output cell to the input cells and
assigned a value to the output based on the location of nearby inputs. Since the center of the
output cells did not align with the inputs, it was necessary to use a resampling technique
to rectify them. Different techniques could be employed to determine the value of the
output cells, such as nearest neighbor, cubic convolution, and bilinear resampling. This
study utilized the value of the four nearest input cells and bilinear resampling to obtain
the weighted average of the input values based on the distance between inputs and the
center of the output cells. This technique is most suitable for continuous surfaces, such as
elevation, because it considers the location and distance between the known points and the
unknown/output cells.

Next, the resultant DEM grid cells from the 1/9 arc-second dataset were plotted and
compared with those of the 1-m DEM (Figure 4). This figure highlights the misalignment
between the grids of the DEM data. This figure was constructed to show that although
the cell resolutions in the x and y directions were the same for the two DEMs, the grids
in Figure 4a,b did not align. The ArcGIS Pro software (Version 2.6) [54] was used in this
study, and it was found that it does not consider this misalignment when comparing the
two DEMs. Although the grid points were more than 1 m off in both directions (1.0671 m
in the x-direction and 1.284 m in the y-direction), the software subtracted the elevations of
the nearest points in the two raster layers to obtain the DoD. The third preprocessing step
addressed this issue. In this step, the 1-m DEM was resampled using the 1/9 arc-second
DEM as the snap raster. In this process, the bottom left corner of the 1-m DEM was stretched
outward to the nearest cell corner of the 1/9 arc-second DEM raster. The same process was
repeated for the upper right corners of the two raster layers, and bilinear resampling was
used to obtain elevation values for the modified cells.

16.77 m

(2) (®) ©
I3.0587m T087m
. —
1736 m 3.0587 m 0.7m

Figure 4. Grid cells for (a) resultant 1-m DEM, (b) 1/9 arc-second DEM, and (c) both DEMs.

Following these preprocessing steps, the DEM datasets were prepared for comparison.
A spatial analyst tool, i.e., a raster calculator in ArcGIS Pro, was utilized to subtract the
1/9 arc-second DEM from the 1-m DEM. This yielded a direct estimate of the vertical
displacement during the considered period, i.e., the DoD shown in Figure 5a. This figure
shows the resultant DoD layer formed from 16,352 rows and columns with a square cell size
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of 3.0587 m. This figure illustrates uplift and subsidence with green and red, respectively.
To distinguish real surface deformation from noise in this map, an LoD threshold was used.
Several thresholds were tested in a trial-and-error approach to obtain the optimum value
for the LoD, starting with the propagated error based on the vegetated vertical accuracy
of the DEM datasets, i.e., 0.7 m. A suitable threshold value should be large enough to
minimize the noise in the new layer but not too large to omit essential landscape changes
in the study area. The noise is most evident in areas with dense vegetation due to the
extended time interval between the acquisition dates of the two DEMs and the difference
in acquisition months relating to leaf-on and leaf-off conditions. Despite this, the trial-and-
error procedure is quite fast, and optimum results can be obtained in a timely manner. It
was found that the 1.5-m threshold was the optimum value to strike a balance between the
above two considerations for landslide detection purposes of this study. The LoD threshold
of 1.5 m was applied to Figure 5a, and the results were stored in a new raster in Figure 5b.
This figure uses three colors to mark each pixel (cell) within the study area: green cells mark
upward vertical displacements above the LoD threshold, red shows downward vertical
displacements above the LoD threshold, and grey denote areas with vertical displacements
below the LoD threshold. It is important to note that because the cell size for both DEMs is
approximately 3 m, the smallest marked area is a square with a side length of 3 m.

DoD (m LoD thresholds (m
m) || (b) (m)

Petaluma Petaluma M <-15
P > 15
=16 - +1.5
> +1 N : %
< A . _ 37
=2 & R =
Bl <5

4[0 kilometerT; F 0 20 20 kilometers'l\\/\
1 1 . | L 1 1 1 1 L 1 1 N

. ?San Francisco| » _San Francisco

Figure 5. DoD layer (a) before and (b) after applying LoD thresholds.

4.3. DoD Analysis

The DoD layer represents the changes in elevation between the two DEMs with
acceptable accuracy. However, not all elevation values are accurate, and RMSEz does not
include all the uncertainties associated with DEMs. As a helpful indicator for accuracy,
RMSEz is a measure to quantify the DEM correspondence to the source data, whereas
factors such as image distortions, clouds, and steep terrains could also affect the quality
of the DEM data. Furthermore, not all elevation changes were produced by landslides.
Various other factors could cause elevation change, including but not limited to construction,
changes in river basins, erosion, and water body treatments in DEMs. Therefore, marked
areas in the filtered DoD layer, i.e., the DoD layer filtered via an LoD threshold, could be
regarded as landslide candidates, and further assessment was needed to classify them into
landslides (true positives) and nonlandslides (false positives). Two types of auxiliary maps
were generated for this purpose: multidirectional Hillshade maps and customized vector
basemaps.

Multidirectional Hillshade presents a 3D representation of the terrain with a grayscale
color ramp. This technique combines six different light sources to visualize and shade
the terrain. Though being qualitative—the elevation values are not displayed—it is a
valuable tool for displaying more details and enabling a closer look at the terrain surface.
Therefore, two multidirectional Hillshade maps were generated from the multi-temporal
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DEM data. These newly generated layers were used alongside the filtered DoD layer
to assess the marked areas. Multidirectional Hillshades were used to visually identify
patterns of contiguous elevation change in the study area and find areas with a downward
movement in the upslope followed by an upward movement in the downslope. Such
patterns helped distinguish landslides from other vertical displacements.

The customized vector basemaps were also important. Evaluating these maps con-
firmed our assumption regarding the DoD layer: many of the marked areas belonged to
rivers, lakes, and the construction of new buildings and roads. For example, the elevation
values for many water bodies differed between the two DEMs. Figure 6 was constructed to
emphasize this point. In this figure, the blue rectangles mark some of the areas in which
elevation changes were caused by the difference in elevation values of lakes and water
bodies. Moreover, the customized basemaps helped distinguish real elevation changes
from the ones caused by artifacts, such as remnants of buildings in the bare-earth DEM
data.

N
A DoD thresholds (m)
petaluma [l <-1.5
Bl > +15
5 S RG)ELEINS)
%
37
: [=
¢
¢ <
&
10 20 40 kilometer:
rl) L 1 L 1 1 1 1 1 ST\"-
" i San Francisco

Figure 6. Illustration of lakes and water bodies incorrectly marked in filtered DoD layer.

It was found that the primary causes of the noises in the DoD layer (false positives)
were water bodies and changes due to the construction of buildings and roads. Moreover,
it is known that the risk of landslides increases near roads and rivers. Thus, another set of
auxiliary maps was generated to mark roads, water bodies, and buildings. For this purpose,
Vector Tile Style Editor [55], an online tool for customizing vector tile layers, was used. This
tool enables editing and customizing a basemap from ArcGIS Living Atlas of the World [56]
that contains many basemaps. In this study, a classic ESRI topographic map named World
Topographic Map [57] was customized to only show the desired areas. The customized map
uses three colors to denote water bodies, buildings, and roads in the study area. Figure 7
demonstrates an example within the study area for the customized map. In this map, water
bodies, buildings, and roads are marked blue, purple, and black, respectively. All the other
features in this vector basemap are transparent to aid visualization. In the next section, this
map will be overlaid on the filtered DoD layer to demonstrate the geographical location of
these features relative to the marked areas.
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Figure 7. Customized vector basemap.

5. Results
5.1. Verification Using Landslide Inventories

To study the landslide locations, the filtered DoD and Hillshade layers were overlaid by
the customized basemap. In addition, the grey color in the DoD layer was set to transparent
to help visualization. This means that the vertical displacements below the LoD threshold
were filtered out. Next, two landslide inventories and their associated reports for the events
were used to assess the recorded landslide locations. The employed landslide inventories
were the U.S. Landslide Inventory by USGS [58] and the Global Landslide Catalog (GLC)
by NASA. The USGS landslide inventory is an interactive map compiled from different
local, state, and federal organizations. This inventory includes links that provide access
to the original inventory files for the associated reports and news articles [59]. The GLC
is a database that was created to identify rainfall-triggered landslides in the world. This
inventory uses media reports, scientific reports, disaster databases, and other sources to
compile its dataset [60,61]. As is often the case in landslide inventories, the exact locations
were unknown for many landslide records. Instead, the location of landslides was only
known to be within a specific range around the marked location. The newly developed
method detected these landslides and marked them in the filtered DoD layer. The marked
landslide locations were then compared with the associated reports and articles in the news
to verify their accuracy.

One example is the 2017 landslide(s) near Fairfax, California (Figure 8). In this figure,
the blue cells represent water bodies, the purple cells show buildings, the black cells denote
roads, the green cells denote areas with uplift, the red cells represent subsidence, the
red dot marks the location of a landslide in the inventories, and the dotted blue boxes
mark the outer boundaries of areas with uplift and subsidence. The first two images on
the left belong to a multidirectional Hillshade created from the 1/9 arc-second DEMs in
2010 with (Figure 8a) and without (Figure 8b) the filtered DoD layer. Figure 8c is another
Hillshade derived from the 1-m DEMs and depicts the same area nine years later in 2019.
Figure 8a was intended to show the landslide location in the inventories and the detected
changes in the DoD layer. The following two subfigures were constructed to compare
pre-event (Figure 8b) and post-event (Figure 8c) Hillshades to evaluate the accuracy of the
detections. Although DoDs are not present in these two figures, the blue dotted boxes mark
the approximate location of elevation changes. The location of this landslide was known to
be within 1 km from the labeled location in the inventories, i.e., the red dot. The DoD layer
did not detect significant changes above the LoD threshold in the immediate vicinity of this
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area. Further investigations of the associated news articles and reports revealed that the
red dot represents multiple landslides triggered by a winter storm in that neighborhood,
which concurs with results obtained with our filtered DoD layer. Analyzing the DoD layer
revealed several locations marked with elevation changes (Figure 8).

Legends

[ Water body
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I Road

I DoD<-1.5

I DoD > +1.5
e Inventory

{"""iMarked area

120 meters] D 120 meter

Figure 8. Landslide(s) near Fairfax, California in 2017. (a) Filtered DoD layer over the 1/9 arc-second
Hillshade; (b) Hillshade layer produced from the 1/9 arc-second DEM acquired in 2010; (c) Hillshade
layer produced from the 1-m DEM from 2018.

In fact, many landslide reports suggested the occurrences of several other landslides in
the area were caused by the same triggering factors of the recorded event, i.e., rainfall and
winter storms. However, the responsible agencies could not gather enough information
and locate them, so they were omitted from the inventory. The new method can detect
these landslides and mark their locations. Another example of such events is presented
in Figure 9, which uses the same legends and sequence presented in the previous figure.
As shown in this figure, there are many changes in the landscape of this region, with the
vertical displacement values reaching the maximum of 4 m for the marked areas. Despite
this substantial elevation change, the inventories did not record the marked landslides.
This figure also demonstrates elevation changes due to construction: a building marked
with both purple and red markers indicates elevation changes due to recent construction.

Legends
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Figure 9. Landslide in Francis Drake Boulevard near Fairfax, California in 2017. (a) Filtered DoD
layer over the 1/9 arc-second Hillshade; (b) Hillshade layer produced from the 1/9 arc-second DEM
from 2010; (c) Hillshade layer produced from the 1-m DEM from 2018.

Figure 10 is constructed to highlight a case in which not only the exact location of
the landslide was not known, but also only one single landslide from a series of occurred
landslides was reported. The location of this landslide was known within 1 km, but the
reports indicated that other landslides were reported by firefighters but not included in
the inventories. Although several landslides are visible in this figure (red polygons), other
elevation changes were also obtained nearby this area that supported the evidence found
in the reports. Figure 11 is constructed to demonstrate another advantage of the developed
method. That is, this method can detect landslides in unpopulated or sparsely populated
areas, which have been paid less attention to when documenting landslides and compiling
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inventories. The proposed method identified many areas with an apparent change in the
elevation, for which no landslide event was found in the inventories. Figure 11 is one
example of such an area. As can be seen in this figure, there is a discernable landslide in
this region. This landslide was not reported or documented.

Legends
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Figure 10. Landslide in E1 Campo, California in 2014. (a) Filtered DoD layer over the 1/9 arc-second
Hillshade; (b) Hillshade layer produced from the 1/9 arc-second DEM from 2010; (c) Hillshade layer
produced from the 1-m DEM from 2018.
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Figure 11. Landslide in Green Gulch, California in 2011. (a) Filtered DoD layer over the 1/9 arc-
second Hillshade; (b) Hillshade layer produced from the 1/9 arc-second DEM from 2010; (c) Hillshade
layer produced from the 1-m DEM from 2018.

5.2. Validation against Google Earth Images

High-resolution Google Earth images were used to verify the detection accuracy of the
new method. For this purpose, marked areas in the filtered DoD layer were converted to
polygon features and exported into a geodatabase feature class. Next, the feature polygons
were imported into Google Earth Pro in two sets to show upward and downward vertical
displacements marked via the filtered DoD layer. These layers were combined with the
historical imageries of Google Earth Pro to view the terrains before and after the DEM
data were acquired. Several factors were considered in an attempt to choose the most
appropriate dates. These factors include the percentage of cloud-covered areas, distortions,
and the quality of the images. Moreover, it was imperative to find the closest image
acquisition months for pre-event and post-event images to minimize the effect of seasonal
vegetation growth and atmospheric variations. The most suitable date for pre-event images
belonged to October 2009. September 2018 and June 2019 were the best available dates for
post-event images. The filtered DoD layer was then overlaid on the Google Earth images to
visually assess the areas marked with elevation change. It is important to note that since



Geosciences 2022, 12, 378

14 of 20

Google Earth images do not provide bare earth elevations, this validation method was only
performed for areas without dense canopy and vegetation. In the following, some of these
cases are presented to verify and discuss the results of the proposed method.

Figure 12 is one of these cases showing an apparent change in the topography of the
area. This figure uses yellow and red polygons to show upward and downward vertical
movements, respectively. Although there is evidence of an exposed landslide scar that
had happened prior to 2009 in the middle of Figure 12a, new crown cracks and new minor
scarps are visible in the 2019 image as well (Figure 12c). Another noteworthy change is the
altered shape of the old scarps and lines that were left from the previous landslide event.
This indicates an active landslide that had been evolving between the two acquisition
dates. Additionally, patterns of downward vertical movement in the upslope and upward
movement in the downslope (landslide deposits) are visible in this figure. This observation
implies that earth mass from the uphill moved downward and accumulated at lower
locations.

Legends
DoD < -1.5
IIDoD > +1.5

Figure 12. Example of an area showing vertical displacement with (a) filtered DoD layer over a
Google image from October 2009; (b) Google image from October 2009; (c) Google image from June
2019.

Another example is presented in Figure 13. For the marked area on the left, there are
traces of a scarp and a crack in Figure 13c. This subfigure also shows a post-event image of
the landslide on the right. This landslide is easily detectable from the cracks parallel to the
slope and noticeable scars in the 2019 Google Earth image. Figure 14 shows another area
with patterns of accumulation of debris in the downslope and subsidence in the upslope,
indicating landslide activities. A closer assessment reveals landslide scars that affected the
patchy vegetation in the area in Figure 13c. Besides, signs of debris flow are visible from
the top right of the image to the bottom left.
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Figure 13. Example of the areas showing vertical displacement with (a) filtered DoD layer over a
Google image from October 2009; (b) Google image from October 2009; (c) Google image from June
2019.

g 2

Legends
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Figure 14. Example of the areas showing vertical displacement with (a) filtered DoD layer over a
Google image from October 2009; (b) Google image from October 2009; (c¢) Google image from June
2019.

The following two figures are constructed to show examples of the destruction and
removal of vegetation cover due to landslides, resulting in landslide scars. Figure 15 is
presented to emphasize the effectiveness of the proposed method for landslide detection
in vegetated areas. Moreover, the landslide in Figure 16 is identified similarly due to the
scar left by the slope failure. However, the side length of the depicted area in Figure 16 is
approximately 6 m, which demonstrates the high potential of the new method in identifying
small landslides.

Legends
DoD<-1.5
IDoD > +1.5

Figure 15. Example of the areas showing vertical displacement with (a) filtered DoD layer over
a Google image from October 2009; (b) Google image from October 2009; (c) Google image from
September 2018.
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Figure 16. Example of the areas showing vertical displacement with (a) filtered DoD layer over
a Google image from October 2009; (b) Google image from October 2009; (c) Google image from
September 2018.

6. Discussion

This study employed map algebra operations to analyze high-resolution multi-temporal
DEM data and to extract information regarding surface deformation and vertical displace-
ments. Several preprocessing steps were followed to prepare the high-resolution DEMs
for use, including map projections and resampling techniques. The results were verified
against landslide inventories and Google Earth images. The new method can find an
accurate location for all the detected landslides. This is a beneficial feature that can help
improve the existing landslide reports and inventories that offer mere approximations
regarding landslide locations.

Moreover, the proposed method minimizes human intervention: most preprocessing
steps and procedures can be implemented via computer programs. This obviates the need
for a human expert interpreter and provides new possibilities for landslide monitoring and
the preliminary stage of landslide detection projects. This study accomplished the above
tasks without introducing any cost for DEM acquisition by using publicly available DEM
datasets of 3DEP. It is also worthwhile to mention that this performance was achieved
by comparing 1/9 arc-second and 1-m DEMs. Considering the recent developments in
remote sensing and GIS data, this method could be further enhanced by incorporating
higher-resolution DEM data and the continuous feeding of temporal data into the model,
i.e., adding DEM data from other times. It is also important to note that the accuracy of
this method is only as good as the data built into it. Therefore, the use of LiDAR data in
this study makes it prone to errors in areas with dense vegetation, heavy rain, and high
altitudes.

The proposed method enables us to differentiate between the erosion caused by water
bodies and landslides by supplementing the filtered DoD layer with customized basemaps,
which is a noteworthy improvement over the existing methods. It was observed that
many false positives, i.e., cases where elevation changes are falsely identified as landslides,
belong to water bodies. These false positives indicate that the proposed method is unable
to differentiate landslides from erosions caused by water bodies. Eliminating these erosions
was especially important since they have similar patterns of erosion and deposition to
landslides [32] and can be easily misclassified as landslides. However, erosion can also alter
the stress distribution in the soil and disturb the static equilibrium that causes a landslide.
Therefore, it is important not to label all elevation changes adjacent to water bodies and
riverbanks as erosions. Site reconnaissance is perhaps the most suitable way to distinguish
between erosion and landslides, but this study uses a different approach to minimize these
misclassifications. A high LoD threshold ensures that most of the erosions are eliminated
from the dataset. Additionally, landslides that are as small as one pixel and fall on the
riverbanks are eliminated from the dataset.

Moreover, the performance of the new method was good, even though many geomor-
phic features were obscured by dense vegetation cover, which negatively impacted the
accuracy of the DEM data due to limitations in ground detection. The dense vegetation
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also limited our ability to use Google Earth images to verify the detected landslides. For
these areas, multidirectional Hillshade maps were generated and used to study ground
deformations. Additionally, when considering DEMs that are nine years apart, revegetation
can adversely affect the accuracy of the DEM data and our ability to identify elevation
change. That is one of the reasons we adopted a relatively high LoD threshold, even
though the low RMSE of the high-resolution DEMs suggested that the proposed method
can identify smaller elevation changes. Therefore, better results are possible by acquiring
the DEM data annually and preferably right after the rainy season in the study area because
that is when most landslides occur and before most of the leaves appear. Annual DEM
acquisition is also beneficial since the proposed method is limited by data availability. Data
availability is most crucial for pre-event DEMs since these data are lost, and acquisition is
impossible after the landslide event. Additionally, annual data are beneficial for detecting
the rate of change and other kinematic landslide features for each landslide which is an
important factor used to characterize landslides.

An area that the proposed method struggles with is identifying slow-moving land-
slides that creep at low rates. This is especially important to consider when applying this
method to annual DEMs or when the rate of change is as low as a few millimeters or cen-
timeters per year. In this study, the time interval is nine years which renders this issue less
significant, but this is worthwhile to consider when interpreting the results. Slope-parallel
and translational landslides are other examples of landslides that cannot be identified by
the proposed method. These types of landslides do not change the elevation significantly,
and most of the displacements are in the horizontal direction and along a planar surface of
weakness.

7. Conclusions

A new method for landslide detection and mapping was proposed and tested in this
study. The 3DEP products by USGS were utilized to obtain multi-temporal high-resolution
DEMs and detect changes in the landscape for a study area in Northern California. Several
preprocessing steps were followed to prepare the DEM datasets for use and ensure their
spatial alignment. A DoD layer filtered via an appropriate LoD threshold was employed
to indicate local elevation changes between the DEM datasets. It was found that the
filtered DoD layer, vector basemaps, and multidirectional Hillshade layers can supplement
one another to obtain a more realistic and detailed understanding of the changes in the
landscape and the geomorphological evolution of landslides. Using this method, subtle
ground displacements caused by small and medium-sized landslides, which were not
reported previously, were successfully detected. These vertical displacements were verified
with landslide inventories and Google Earth images. One of the contributions of this
method is that the filtered DoD layer can be combined with DEM datasets to provide
pre-event and post-event DEM data for each detected landslide event. DEM data are
especially important for landslides in sparsely populated areas because they have been
paid less attention due to the lack of fatalities and damage to assets. These data can be
employed to extract knowledge from past landslides and study their mechanisms, features,
triggering factors, and myriads of other applications.
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